[class_ID x_center y_center bbox_width bbox_height x1 y1 vis x2 y2 vis ...]
Important files in the Yolov9 pose detection algorithm file
datasets/pose_json2txt.py: Transfer label files from .json to .txt
datasets/split.py: split dataset
change configuration files
ultralytics\cfg\models\v9\yolov9-pose.yaml
# Parameters
nc: 1 # number of classes
kpt_shape: [2, 3] # number of keypoints, just change the first parameter, '3' means visibility
ultralytics\cfg\datasets\coco-pose.yaml
# Keypoints
kpt_shape: [2, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)# Classes
names:
0: Joint
ultralytics\utils\plotting.py
# line 243 'radius' to control the size of keypoints
cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, color_k, -1, lineType=cv2.LINE_AA)# cv2.circle(self.im, (int(x_coord), int(y_coord)), , color_k, -1, lineType=cv2.LINE_AA)